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• Real-world comparative-effectiveness studies can generate evidence of relative 

efficacy for novel clinical treatments, when implementation of a randomised controlled 

trial is infeasible. 

• However, non-random treatment assignment and unrecorded confounding variables 

can lead to residual bias in the form of unmeasured confounding1. 

• Quantitative bias analysis (QBA) has been recommended to investigate the potential 

impact of unmeasured confounding on a study’s conclusions2.

• As many novel treatments now involve complex mechanisms of action or delivery, 

survival trends frequently violate the proportional hazards (PH) assumption3. Therefore, 

flexible QBA methods are required which can be applied under PH violation. However, 

there is a lack of such methods.

• Imputation-based adjustment using Bayesian data augmentation can accurately recover the 

adjusted dRMST when confounding variables are unmeasured. 

• Hence, our proposed QBA framework can correctly identify the characteristics required by an 

unmeasured confounder to overturn a study’s conclusions.

• Therefore, our proposed QBA framework is a valid sensitivity analysis to investigate the 

robustness of real-world comparative-effectiveness studies displaying PH violation, when 

unmeasured confounding is suspected.   

• The proposed QBA framework is modular in nature and can be implemented under a wide 

range of non-PH settings, effect measures, and adjustment methods.

• Bayesian modelling allows for the inclusion of prior information into the analysis.

• Future work will investigate further the performance of our proposed QBA framework under 
different simulation scenarios and apply the framework to empirical data.

Figure 1: Proposed QBA Framework. Steps 1 and 2 are iterated for different 

values of 𝛽𝑢 and 𝛼𝑢 and the sensitivity of the dRMST examined.• The difference in restricted mean survival time (dRMST) 

has been proposed as an alternative to the hazard ratio 

(HR) when the PH assumption is violated4.

• Therefore, we proposed a two-step QBA framework 

(Figure 1) which assess the sensitivity of dRMST to 

unmeasured confounders 𝑢.

• In step 1, multiple imputation (MI) of 𝑢 with user-specified 

association parameters 𝛽𝑢 and 𝛼𝑢 is implemented.

• By combining Bayesian data augmentation5 with Markov 

chain Monte Carlo sampling, imputed values 

are drawn from the joint posterior 𝜋 given below:

𝜋 𝜃, 𝑢 𝑡, 𝑧, … ) ∝ 𝑓 𝑡 𝜃, 𝑢, 𝑧, 𝛽𝑢, … )𝑔(𝑧 𝑢, 𝛼𝑢, … 𝑝 𝑢 𝑝(𝜃) 

• In step 2, imputation-based adjustment of dRMST is 

implemented through inverse probability of treatment 

weighted (IPTW) Kaplan-Meier (KM) curves.
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• Data was simulated using a delayed treatment 

effect model with exponential survival and a binary 

confounder 𝑢 ~ Bernoulli(0.5) (Figure 2).

• Imputation-based adjustment (Imputed) was 

compared against adjustment using the actual 

simulated 𝑢 (Actual) and a naive analysis where 
confounding was ignored (Naive).

• Regression parameters 𝛽𝑢 and 𝛼𝑢 were varied 

across 8 scenarios to simulate 100 datasets of 300 

patients each. 1000 imputations were drawn for 

each dataset using the statistical software JAGS6.
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• Develop a flexible QBA framework which is valid under PH violation. 

• Assess the proposed framework's ability for accurate and precise effect estimation 

which is adjusted for unmeasured confounding.

• Design and implement a simulation study to perform this assessment under PH 

violation and different forms of unmeasured confounding.

Figure 2: Simulation Model
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Figure 3: Comparison of estimated dRMST between all 3 methods.
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Method

Comparable ability to 

recover the true dRMST 

was observed between 

imputation-based 

adjustment and actual 

adjustment across all 

scenarios.

Ignoring the presence of 

confounding in the naive 

analysis led to bias, 

which imputation-based 

adjustment corrected.

Bias1,2 SE1

𝛼𝑢
3 𝛽𝑢

4 Imputed Actual Imputed Actual

Small 1 log(0.5) 0.12 -0.207 1.957 1.914

log(2) -0.330 -0.110 1.423 1.399

Small 2 log(0.5) -0.140 0.065 1.949 1.905

log(2) 0.299 0.133 1.399 1.366

Large 1 log(0.5) 0.012 -0.065 2.667 2.328

log(2) -0.283 -0.268 1.911 1.701

Large 2 log(0.5) -0.040 0.122 2.671 2.337

log(2) -0.022 -0.056 1.863 1.673

Table 1: Comparison of bias and standard error (SE) between 

imputation-based adjustment (Imputed) and actual adjustment (Actual).

1: Averaged over 100 simulations. 2: Bias is defined as estimate – truth.

3: Parameters for the logistic propensity model: Values induce the following imbalances:

Small 1: Pr 𝑍 = 1 𝑈 = 1) = 0.4. Small 2: Pr 𝑍 = 1 𝑈 = 1) = 0.6.
Large 1: Pr 𝑍 = 1 𝑈 = 1) = 0.2. Large 2: Pr 𝑍 = 1 𝑈 = 1) = 0.8.

4: Conditional log(HR) capturing the effect of 𝑢 on survival: Values correspond to a 

either a doubling (log(2)) or a halving of the hazard (log(0.5)).True adjusted dRMST
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