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Introduction Objectives .

. . , _ Develop a flexible QBA framework which is valid under PH violation.
* Real-world comparative-effectiveness studies can generate evidence of

¢ Arcturis

relative efficacy for novel clinical treatments, when implementation of a * Assess the proposed framework’s ability for accurate and precise effect
randomised controlled trial is infeasible. estimation which is adjusted for unmeasured confounding.

« However, non-random treatment assignment and unrecorded confounding * Design and implement a simulation study to perform this assessment under
variables in real-world data sources can lead to residual bias in the form of PH violation and different forms of unmeasured confounding.

unmeasured confounding'.

« [f suspected, quantitative bias analysis (QBA) has been recommended to
investigate the potential impact of unmeasured confounding on a study’s
conclusions®.

* As many novel treatments now involve complex mechanisms of action or

delivery, survival trends frequently violate the proportional hazards (PH) Figure 3: Comparison of estimated dRMST between all 3 methods
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parameters Bu and ay is implemented.

Table 1: Comparison of bias and standard error (SE) between imputation-based

« By combining B lan dat tation® with Markov chain Monte Carlo
Y NiNG Bayesian data alugmertation Wi oV | r adjustment (Imputed) and actual adjustment (Actual).

sampling, imputed values are drawn from the joint posterior m given below:

m(o,ult,z,..)xf(t|6,u,z,Bu..)9(Zzlu,au,...)p(u)p(6) Bias!2 SE!
Outcome Propensity Prior au3 ,Bu4 Imputed Actual Imputed Actual
model model specification

« |n step 2, imputation-based adjustment of dRMST is implemented through Small 1 log(0.5)  0.12 -0.207  1.957 1.914
inverse probability of treatment weighted (IPTW) Kaplan-Meier (KM) curves. log(2) -0.330 -0.110  1.423 ol

Figure 1: Proposed QBA Framework. Steps 1 and 2 are iterated for different

values of By and au and the sensitivity of the dRMST examined. Small 2 log(0.5) -0.140  0.065  1.949  1.905
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ol } oo ?djusted 1: Averaged over 100 simulations. 2: Bias is defined as estimate — truth.

ey T “Rubins ules. 3: Parameters for the logistic propensity model: Values induce the following

\_ " 4 imbalances:

Small1:PrZ=1U=1)=04.Small2:PrZz=1U=1)=0.6.
Large1:PrZ=1U=1)=0.2. Large2: PrZ=1U=1)=0.8.

Simulation Study 4: Conditional log(HR) capturing the effect of u on survival: Values correspond to a
either doubling (log(2)) or a halving of the hazard (log(0.5)).

Conclusions

 Data was simulated using a delayed treatment effect model with
exponential survival and a binary confounder u ~ Bernoulli(0.5) (Figure 2).

* Imputation-based adjustment (Imputed) was compared against adjustment
using the actual simulated u (Actual) and a naive analysis where
confounding was ignored (Naive).

° R.egression parameters Bu and Qu were varied across 8 sc.enarios to « Imputation-based adjustment using Bayesian data augmentation can
simulate 100 datasets of 300 patients each. 1000 imputations were drawn accurately recover the adjusted dRMST when confounding variables are
for each dataset using the statistical software JAGS®. unmeasured.

Figure 2: Simulation Model * Hence, our proposed QBA framework can correctly identify the characteristics

required by an unmeasured confounder to overturn a study’s conclusions.

 Therefore, our proposed QBA framework is a valid sensitivity analysis to
investigate the robustness of real-world comparative-effectiveness studies
displaying PH violation, when unmeasured confounding is suspected.
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Introduction

* Real-world comparative-effectiveness studies can generate evidence of
relative efficacy for novel clinical treatments, when implementation of a
randomised controlled trial is infeasible.

* However, non-random treatment assignment and unrecorded
confounding variables can lead to residual bias in the form of
unmeasured confounding'.

» Quantitative bias analysis (QBA) has been recommended to investigate
the potential mpact of unmeasured confounding on a study’s
conclusions®.

* As many novel treatments now involve complex mechanisms of action
or delivery, survival trends frequently violate the proportional hazards
(PH) assumption®. Therefore, flexible QBA methods are required which
can be applied under PH violation. However, there Is a lack of such
methods.



Objectives

* Develop a flexible QBA framework which is valid under PH violation.

* Assess the proposed framework's abllity for accurate and precise
effect estimation which Is adjusted for unmeasured confounding.

* Design and implement a simulation study to perform this assessment
under PH violation and different forms of unmeasured confounding.



Method - QBA Framework

* The difference in restricted mean survival time (ARMST) has been
proposed as an alternative to the hazard ratio (HR) when the PH
assumption is violated”.

* Therefore, we proposed a two-step QBA framework (Figure 1) which
assess the sensitivity of dRMST to unmeasured confounders wu.

* |In step 1, multiple imputation (MI) of u with user-specified association
parameters Bu and ay Is implemented.

« By combining Bayesian data augmentation® with Markov chain Monte
Carlo sampling, imputed values are drawn from the joint posterior
given below:

m(e,ult,z,...)ecf(t|6,u,z,Bu...)g(zlu,a,...)p(u)p(6)

Outcome Propensity Prior
model model specification

* |nstep 2, mputation-based adjustment of dRMST is implemented
through inverse probability of treatment weighted (IPTW) Kaplan-Meier
(KM) curves.

Figure 1: Proposed QBA Framework. Steps 1 and 2 are iterated for
different values of By and au and the sensitivity of the dRMST examined.
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Method - Simulation Study

 Data was simulated using a delayed treatment effect model with

exponential survival and a binary confounder u ~ Bernoulli(0.5)
(Figure 2).

Figure 2: Simulation Model
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* |Imputation-based adjustment (Imputed) was compared against
adjustment using the actual simulated u (Actual) and a naive analysis
where confounding was ignored (Naive).

* Regression parameters Bu and ay were varied across 8 scenarios to

simulate 100 datasets of 300 patients each. 1000 imputations were
drawn for each dataset using the statistical software JAGS®




Results

Figure 3: Comparison of estimated dRMST between all 3 methods
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Results

Table 1: Comparison of bias and standard error (SE) between imputation-
based adjustment (Imputed) and actual adjustment (Actual).

Bias'? OE

0 G,* Imputed Actual Imputed Actual
Small1 log(0.5) 0.12 -0.207 1.957 1.914
log(2) -0.330 -0.110  1.423 1.399

Small 2 log(0.5) -0.140 0.065 1.949 1.905
log(2) 0.299  0.133 1.399  1.366

large 1 log(0.5) 0.012  -0.065 2.667  2.328
log(2) -0.283 -0.268 1.911 1.701

Large 2 log(0.5) -0.040 D122 2.671 2.337
log(2) -0.022 -0.056 1.863  1.673

1. Averaged over 100 simulations.
2. Bias is defined as estimate — truth.

3. Parameters for the logistic propensity model: Values induce the following imbalances:
Smallt:PrZ=1U0=1)=04. Small2:PrZ=1U =1) = 0.6.
Large 1: PrZ=1U=1)=02. Large2:PrZ=1U =1) =0.8.

4. Conditional log(HR) capturing the effect of u on survival: Values correspond to a True
adjusted dRMST either a doubling (log(2)) or a halving of the hazard (log(0.9)).
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Conclusions

* |mputation-based adjustment using Bayesian data augmentation can
accurately recover the adjusted dRMST when confounding variables

are unmeasured.

 Hence, our proposed QBA framework can correctly identify the
characteristics required by an unmeasured confounder to overturn a

study’s conclusions.

* Therefore, our proposed QBA framework is a valid sensitivity analysis to
Investigate the robustness of real-world comparative-effectiveness
studies displaying PH violation, when unmeasured confounding Is

suspected.

* The proposed QBA framework is modular in nature and can be
Implemented under a wide range of non-PH settings, effect measures,
and adjustment methods.

* Bayesian modelling allows for the inclusion of prior information into the
analysis.

* Future work will investigate further the performance of our proposed
QBA framework under different simulation scenarios and apply the
framework to empirical data.
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